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Ersatzschaltbild Stator,

12.1 Modellbildung

Spannungsgleichungen im uvw-System

hier nur fir Phase 1 M.... dlg;
S11
dt A
dlg, Stator- dl
Rsilsi  Lsor =gt system < Mg, diz
I 1
° LI - M dlg,
SSL
Us; Uingnt (7 >
v \ ) dlg;
o / RS1" ™ 4t
Rotor- dlq,
System \ R821'—dt
dl
M . 'R3
RS31" ™ 4t J

Unterschied zur PMSM: jetzt gibt es auch auf der
Rotorseite 3 Stréme, die tUber das Luftspaltfeld
mit dem Statorsystem gekoppelt sind

vgl. einphasiges
Ersatzschaltbild:

Hauptinduktivitat und
Magnetisierungsstrom
(Luftspaltfeld)

= afp-System verwenden,
um Koppelterme zu
eliminieren!
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12.2 Systemgleichungen im af-System

Raumzeigerersatzschaltbild = Spannungsgleichungen im of3-System

Rs Ls, Is I'n L'rs Rk
1 ° 1
Raumzeiger beschreiben den Rotorfluss:
stationdren und dynamischen 1u Y= L'r,sIr + Lh.lu
Zustand eines Drehstrom- Stator- dl, Rotor- . 3
systems. Transformation siehe Us kreis Ly at Ly kreis )P ®mech LR @
Abschnitt 4.5. Vorgehensweise Magnetisierungsstrom:
bei der SM war identisch, siehe 7 7 7 | = ls + ER
Abschnitt 6.3 Seite 15. o g
Transformation Komplexe Schreibwc_eise f_Ur Stator _und Rotor Ricktransformation
in das af-System (Komponentenschreibweise: 4 Gleichungen) in das 3-Phasensystem
U= U+ jUg | U = Rele + Lo 4.3 6= lg,+ !
Ug,(t)—> 3 YsT™ YsamIUsp | Us = Rglg So' gt h' gt Is= Isa™ Jlsp 5 —> 154(t)
Usz(t) 5 dl' dl Isz(t)
Ut — 2 ul'? = RR' E s L'Rcs' — + I—h' —= - j'p'(’)mech'i‘R 3 —> |t
s3(t) dt dt s3(t)
U's= U's + j-U'R I'o= gt oI > |, (t
A B L
Kurzschluss- Ug,=0 - T R™ "ra™ ITRe | 9 ra(t)
laufer URﬁ= 0 3 5 IRZ(t)
—>
|R3(t)
vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 70/71 ®mech
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12.2 Systemgleichungen im af-System

Herleitung einer Beziehung fiir das Drehmoment

__________ - Rotorkreis-Querzweig aus dem Raumzeiger-ESB:
Spannungsquelle Bewegungsinduktion = elektromechanische Energiewandlung

P Onecn'r @ Wirkleistungsberechnung mit Raumzeigern, allgemein: P = % -re{U-I"}

v - _
. . ) _ 3 . , , | konjugiert komplex:
.......... innere Leistung: P, = o re { P onecn¥'r--I'r"} Vorzeichenwechsel
fir den Imaginarteil
P=M:o

mech

inneres Drehmoment: M, = % p-re{ j¥Yg--I"}= % p-im{¥x-I'g*}

1 L,
| = l+H'sund ¥V'o=Ls J-+L] = I's= P -
_p_ —S —R —R RG —R h —p. —R Lh + L'RG —R Lh + I—'RG —S
mit I anstelle I'y M= 2p " m g = Sp g g )
=S —R- i 2 p Lh+L|RG — R =S 2 p Lh+L|RG Ra SB RB Sa

0

E'R= \P'Ron-l- J\II'RB Und ls* = ISOL- JISB

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 73 und 76/77
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12.2 Systemgleichungen im af-System

Fazit fiir das Drehmoment

Inneres Drehmoment: Fazit:

e Mit den 2 komplexen Spannungsgleichungen
ergeben sich 4 Zustandsdifferentialgleichungen
fur Stator- und Rotorstrom

M=3p o (W ey - Pl )
i~ Ra 'S Rp 'S

- Ly + L're

ls= lso* Jlsp » Zustandsvariablen sind 1= lg,+ j-ls; und I'e= I'g,# j-I'g

Y'r=Yre T 'V'rg
e Hilfsvariablen: | = I ,+ j-| s und ¥'x = W's + jW¥'gs= L'r-I'r + Lyl

Statorfrequenz:
¢ Rotorfluss und Magnetisierungsstrom sind aus

L “qt
©s Wird eingeprég den Zustandsvariablen abgeleitete Hilfsvariablen

Bewegungsgleichung: e Zusammen mit der Beziehung fur das Innere Moment

M =M, + Mg+ Jo.or ©eent) und einer Bewegungsgleichung ist das System voll-
standig beschrieben

Rotorfrequenz:
Q Hinweis: Haufig werden Stator- und Rotorfluss als Zustandsvariablen benutzt.

Die Systembeschreibung wird dadurch eleganter, ggf. aber schwerer lesbar.
Beispiel dazu siehe Dierk Schrdder, Grundlagen Elektrische Antriebe, Springer

WR = Og = P Opech
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Umsetzung als Simulinkmodell (siehe Praktikumsversuch)

SW: : blau: . . SW:
Raumzeiger- '
uvw - System transformgtion alpha-beta - System Riicktransformation uvw - System
2/3 KW I1
» |1alpha Mu >
| |-
3/2 KW U1 v Mux ':J)
1Tuvw
Stator. U1y 1 P 11beta Hw >
spannungen U1alpha P U1alpha [alpha
_ | De- U1v Betrag I1
1 | mux > Uty » [1alpha o
Uluvw 1abs
Utw Utw U1beta P Utbeta Ibeta > 11beta
11rms
Index "1" : Stator Betrag 12
> @ 0 P U2alpha [2alpha P> 12alpha
won . Uluvw Rotor- 12abs —b.S
Index "2" : Rotor spannungen  U2alpha P 2beta =
Kurzschluss- >
lAufer U2beta 12beta 2/3 KW 12
Uzbeta L 12alpha 124 >
> P Omega_mech Mi 12beta i2v—» Mux———>C2))
" gletenung. Momega meen o —P 2
M_Last -

Energiewandlung

R 1-D T(u) >
4 Momenten-

i X
Ms [Nm] bilanz 1 q >@D
P> ; V‘ -K- » 5
J_ges [kgm?] omega
— x 1/Theta
e o | @)
Ruckwaértslauf >®
Simulationstool: Simulink / Modell: A. Kleimaier Mi
1 Hochschule Landshut Elektrische Antriebe Master Webversion
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—» Utalpha I1alpha

—> Utbeta 11beta

—» U2alpha 12alpha

—> U2beta 12beta

Simulation dynamisches Verhalten beim Hochlauf

Simulinkmodell — Subsystem "Elektrischer Teil"

U1alpha

U1alpha I1alpha

dl2alpha/dt dl1alpha/dt

ZDGL Malpha

dl1alpha/dt

(1)

I1alpha

dl2alpha/dt
U2alpha
U2alpha P Ulalpha I2alpha
ZDGL I2alpha
C2) P Ulbeta I1beta

»(3)

12alpha

»(2)

U1beta I1beta

dI2beta/dt dl1beta/dt

—# Omega_mech Mi ZDGL I1beta
Energiewandlung
dl1beta/dt di2beta/dt
Ca) P U2beta
Index "1" : Stator U2beta — Pl Ulbeta 12beta »(4)
12beta
ZDGL |2beta
Index "2" : Rotor
I1alpha I1alpha
—{Ulbeta 12alpha 12alpha
- 1 A ’( : )
ind,mech — J'p'mmech‘g R > 1beta I1beta M
Mi
Ulalpha 12beta 12beta
omega_mech 4—@ Drehmoment
Simulationstool: Simulink / Modell: A. Kleimaier Uind,mech Omega_mech
1 Hochschule Landshut Elektrische Antriebe Master Webversion
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Simulinkmodell — Subsystem "Elektrischer Teil" — Subsysteme ...

—» Utalpha I1alpha >
— dI2alpha/dt dl1alpha/dt
Uind,mech
dl1alpha/dt = 1/(L1s+Lh) * ( U1alpha -R1 * [1alpha - Lh * dl2alpha/dt )
(N
U1alpha
* dl1alpha/dt
>
X » - P X
pom— ] > s
@ > —p - | I1alpha
X
dl2alpha/dt di/dt
+
Lh [H]
+
L1s [H] L1
Simulationstool: Simulink / Modell: A. Kleimaier
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Simulinkmodell — Subsystem "Elektrischer Teil" — Subsysteme ...

> irapna Ulalpha = - p*omega_mech*(L2s+Lh) * I2beta - p*omega_mech*Lh * I1beta }
U. =iDw AV
P 12alpha Ulbeta (> Ulbeta =+ p*omega_mech*(L2s+Lh) * I2alpha + p*omega_mech*Lh * I1alpha “indmech = J'P"Omec %
P 1beta
—»{12beta Ulalpha H»> C4 > ' 2
—p| omega_mech I2beta q x —\__>
Uind,mech 7
@ » L Ulalpha
I1beta x
>
s> —
L2s [H
Lh >+ X
Lh [H g
[H] L2
@& x
omega_mech X >
pll]
>
X
@@ <=
Ialpha
> o —,—‘>+ Ulbeta
2D >
I2alpha

Simulationstool: Simulink / Modell: A. Kleimaier

1 Hochschule Landshut Elektrische Antriebe Master Webversion
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Simulinkmodell — Subsystem "Elektrischer Teil" — Subsysteme ...

Rotorfluss

Momentengleichung

—I1alph
apha PSI12_alpha = Lh * (I1alpha + [2alpha) + L2s * |2alpha Mi =3/2 * p * 1/(1+sigma2) * (PSI2_alpha * |1beta PSI12_beta * [1alpha)
—> 12alpha
Mi > PSI2_beta =Lh*(I1beta + |2beta ) + L2s * [2beta sigma_Rotor = L2r/Lh (Rotorstreuziffer)
—P I1beta
—P 12beta
Drehmoment @ >
I2alpha > L
' ahd +
. L
lu_alpha > L
I1alpha PSI2_alpha h
L2r [H] _—
Fehler im Modell, N + ]
dort steht L2s IE x Lh L Ro
i ] >
Lh [H] sigma_Rotor P11/ (1+u)
Mi
>
e > -
@O > - > , ,
I1beta >l L \IIROL.ISB - LI]Rﬁ‘IS(X
lu_alpha1 | g
i PSI2_beta
o
12beta
Simulationstool: Simulink / Modell: A. Kleimaier
1 Hochschule Landshut Elektrische Antriebe Master Webversion
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12.3 Simulation dynamisches Verhalten beim Hochlauf
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Hochlaufvorgang am starren Netz mit fg = 50 Hz

Zeitverlauf Drehzanhl

1000 =
T Anfangswertproblem
o - -
2, 500 . beim Einschalten:
Z
0 . . o
¢ Gleichanteile in den
500 ; ; ; ; ; ; Strangstréomen
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
e Unsymmetrie verursacht
400 Momentenschwingung
300 =
200 ] e Drehzahlverlauf: Glattung
z .
Z 100H | - durch Integrator fir o,
s
0 - -
-100 .
-200 I I I I | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t [sec]
Hochschule Landshut Elektrische Antriebe Master Webversion
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12.3 Simulation dynamisches Verhalten beim Hochlauf

400

300 |

Hochlaufvorgang am starren Netz mit fg = 50 Hz

Moment (iber Drehzahl

200+ |-
B
= L
= 100+ .
Endzustand
M = 65Nm
0 N = 1468Upm
100 |- f | | ‘ = 4
: mit Ersatzschalbild '
. . . . LI
: ‘ ‘ : : : e :
| | | | | | LN |
0 400 600 800 1000 1200 1400 1600 1800 2000
N [Upm]
Hochschule Landshut Elektrische Antriebe Master
Prof. Dr. A. Kleimaier
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung

e Drehzahl wird mit der Statorfrequenz verstellt

e Frequenzrampe zu Hochlauf auf 50 Hz (Nenndrehzahl) L1
L2
e Betrieb wie am Netz, aber mit variablem f 3

e Schlupf stellt sich lastabhangig ein

3~
Frequenzrampe
Us o Frequenz f
A U/f-Kennlinie: Ug = f (fy) ; N 2 —
Usu oo _ | -
: i Amplitude Ug 3~
Grunddrehzahl- . Feldschwéch-
bereich :  bereich
: U/f-Kennlinie
M
3 ~
: >
o
Hochschule Landshut Elektrische Antriebe Master Webversion
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12.3 Simulation dynamisches Verhalten beim Hochlauf

Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung

Zeitverlauf Statorstrome
100 ! | ! ! !

fs
M Frequenzrampe

, '"”"”WHW“WW”W" (1 0 N P E— ;
M'“HHHHHWHHHH1H | L

A

1 [A]

-100
1 1.5

0 0.5 t[sec] —

Zeitverlauf Rotorstrome

100 T |

e Einschwingvorgang beim
Aufschalten der Spannung

e Resonanz der ASM im
unteren Drehzahlbereich

(mech. <> magn.)

1 [A]

-100
0 1.5

Webversion

Hochschule Landshut Elektrische Antriebe Master
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1500

1000

500

N [Upm]

-500
0

140
120
100
80
60

M [Nm]

40
20

12.3 Simulation dynamisches Verhalten beim Hochlauf

Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung

Zeitverlauf Drehzahl

t[sec] —

Zeitverlauf Moment

1.5

1.5

Fazit fiir U/f-Steuerung:

e kein massiver Uberstrom,
geringe therm. Uberlastung

(bei 50 Hz war Ig .~ 7.815y)

e Hochlaufdauer 1 s anstatt 0,45 s,
schont den Antriebstrang

e aber: Resonanz im unteren
Drehzahlbereich. Das Dreh-
moment ist "nicht unter Kontrolle"

¢ nicht zu verwechseln mit Sanft-
anlauf durch elektronischen
Starter: hier wiirde nur die
Statorspannung reduziert

Hochschule Landshut
Prof. Dr. A. Kleimaier

Elektrische Antriebe Master

Kapitel 12: Modellbildung und FOR fir die ASM
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12.4 Drehzahlregelung mit U/f-Kennlinie

Voriiberlegungen fiir (quasi-) stationdren Betrieb

Schlupfkennlinie einer 125 kW ASM (p = 4) fiir fg = 400 Hz
M/K*\"-@R h. Winkelgesch /rad/s =X N/U
500 \'.< N mech. Winkelgeschw. ., / rad/s = 3+ pm
400 Rotorfrequenz: g = $:0g = Mg = P-Opeen
/ \ (Winkelgeschw.)
= :
Z 300 - ‘
= / Drehmoment: M=2My "o ok
- Drehmoment aus My o) o)
200 — RK R
/ Kloss'scher Formel
100 T teN=Ng,: M=2 My
\ angente N = Ng, - =25 OR
% 1000 2000 3000 4000 5000 6000 im Arbeitsbereich: M ~ og bzw. M ~ fg
N /Upm Ny Nsyn
< = > Fazit: Im (quasi-) stationaren Betrieb kann
S
< Si¢ das Drehmoment durch f; gesteuert werden
P-®mechk ORk
O 1 1 1 1 1
0 419 838 1257 1676 2094 2513
P ®mech / rad/s

Hochschule Landshut
Prof. Dr. A. Kleimaier

Elektrische Antriebe Master
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12.4 Drehzahlregelung mit U/f-Kennlinie

Umsetzung

U/f-Steuerung mit Drehzahiregelung:
e unterdrickt Resonanzen wie beim rampengefthrten Hochlauf in 12.3

e einsetzbar fur Antriebe mit geringen dynamischen Anforderungen L1 *
(Pumpen, Lifter, ...) L2 *
e nicht fir hochdynamischen Betrieb mit Drehmomenteinpradgung geeignet L3
(Asynchronservomotor, Prifstands- und Traktionsantriebe, ...)

Drehzahl- Spannungs- 3

regelung steuerung —
hat ein Drehmomen.’.[3|gnal fo=fo+pf, .. Frequenz f,
als Ausgangsgrofie ) 3 _
N -_
Drehzahl- fa ~M fr Amplitude Ug 3~
sollwert _:/\:
p'fmech
Drehzahlregler modifizierte U/f-Kennlinie:
Drehzahl- p/60 —>{| X _
. Us = Ug(fs) + AUs(fr)

istwert TN

M

L4
3 ~
Hochschule Landshut Elektrische Antriebe Master Webversion
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Gleichstrommaschine

12.5 Systemgleichungen im dq-System

Voriiberlegung zur Drehmomenteinpragung bei el. Maschinen

Darstellung der Feldlinien fur das Erregerfeld und Stromwinkel & fir max. Drehmoment

Synchronmaschine Asynchronmaschine
Ankerfeld = Drehmoment Querkomponente des Statorfeldes Querkomponente des Statorfeldes
A A g-Achse 1 a-Achse
Iy,
CPA
Erreger- Rotor- -‘—__%',14 Rotor-
> feld > feld :»{, feld
d-Achse \)\ Qq\' d-Achse
Anker im Laufer, Anker im Stator Stator erzeugt Magnetisierung und Querfeld
Erregung im Stander Erregung durch das Polrad Erregung durch den Magnetisierungsstrom
Drehmoment: |, Synchronmoment: |, Drehmoment: |,
Magnetisierung: | bzw. @, Magnetisierung: | bzw. @, Magnetisierung: 1y = 1,
Kommutierung: Kommutierung: Kommutierung:
mechanischer Kommutator Vektorregelung mit Wechselrichter Vektorregelung mit Wechselrichter
Hochschule Landshut Elektrische Antriebe Master
Prof. Dr. A. Kleimaier
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12.5 Systemgleichungen im dq-System

Wahl des Koordinatensystems fiir die d-Achse

)
o® Bezug fur das dg-System: d-Achse = Nordpol des Rotorfeldes
20 \
66\ o o0
0% P~°\<\% (@° : t ;
Qo“e(\\ Y N s > Rotorflusswinkel y,, = st dt = J(p'wmech-'-(DR) dt
W\ el 0 0
(®) \S) .
e LN
Qv d e G :
o ) (%) :
P E
Ve Bezug fir die Koordinatentransformation: i
. > ; Achse der Wicklung fir Strang U bzw.
U—ﬁcnse a-Achse des statorfesten ap-Systems
a-Achse '
stehend
v

L GRGLLLEEEEEEEEEE
€mmmmmmmmmmmaaaas

3/2-Wandlung dg-Wandlung
Clarketransformation Parktransformation
Das Rotorfeld 1auft mit wg Uber den Rotor hinweg, 3 ly > |
L . . _ Iy 3 ap d
der sich im elektrischen System mit p-wg,.., dreht: ly N
s I
somit ist Oggorfelq = P-Ormech + Or = Og |y ——> 2 . dal 5 g
Das Rotorfeld lauft synchron mit dem Statorfeld um! ’|‘
Im Luftspalt herrschen also die gleichen Vel
magnetischen Verhaltnisse wie bei der SM Im Gegensatz zur Synchronmaschine
= Vektorregelung wie in Kapitel 7. ADEr:  -xrasrsrmrmsraseasmrmarass s s s > kann+, nicht direkt mit einem Pollage-
e
sensor gemessen werden.
Hochschule Landshut Elektrische Antriebe Master Webversion
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12.5 Systemgleichungen im dq-System

Herleitung einer Beziehung fiir das Drehmoment

im{- a-

(on

*} =-im{ab*} =im{a*b}, sonst VZ-Fehler fir M,

I €

. . 3 Ly , . 3 L D
im ap-System war (Seite 6 unten): M, = P T im{-Yrplsupt = 5P T im { W's s" " lsop)
Anwendung der dg-Transformation: l Yoo = Y'raq e™el und lsop=lsaq-© el
. . . 3 I‘h . . 'JY | JY |
dann ergibt sich im dg-System: M, = S P im {W'Raq € “lsgq € ©} Drehoperatoren kiirzen sich heraus
h Ro
l W'rao = P'rg und gy, = lgy +j-lg, durch Bezugssystemwahl ist W', = 0
_ 3 b g
M, = 7[3 L+ L V'rq ISq
l W'rg =Ly - |y Rotorfluss = Hauptinduktivitat - d-Komponente Magnetisierungsstrom
_ 3 Ly’
Ml - ? p ) Lh + L'RO_. I[Jd ’ ISq

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 80
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12.5 Systemgleichungen im dq-System

Zusammenfassung fiir Rotorfrequenz, Magnetisierungsstrom und Drehmoment

Rotorfluss im dq-System: Inneres Moment:
¥'r = Pry L
M, = =2 . .

¥'rq = 0 per Definition, da ¥'; genau auf der d-Achse liegt TP L +L, "¢ S
damit ist: bzw.
Wry = Ly ke 3 L2

- Mi=—=-p- — lura lsq
I' rq : rotorflussbezogener Magnetisierungsstrom Ly + L'ro

u

Fazit fiir die Regelung der ASM

Weitere Beziehungen:
e durch Ig, kann M, direkt eingestellt werden

dl' rq > o durch I kann tber ein PT1-Glied mit t; der
dt

Magnetisierungsstrom: I' gy = lg4- 15 -
Magnetisierungsstrom I' - eingestellt werden,

| . . . .
Rotorfrequenz: O = slq ggf. mit einem Magnetisierungsstromregler
o >  eaus lsq und I' z; kann die Rotorfrequenz oy
Rotorzeitkonstante: Tg = %c bestimmt werden. Wird o, gemessen,
R

kann man v, fir die dg-Wandlung berechnen

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 80/81
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12.6 Feldorientierte Stromregelung "FOR™

Grundsatzliches Strukurbild

Regel- Strom- Vor- inverser inverser PWM
differenz regler steuerung dg-Wander 3/2-Wander
Drehmoment- U, U, Usw
vorgabe |Sq,SO” - ;\: i 'Q dq i 2 U MM —
: SW2 W* A A A
Magnetisierungs- | é U, U, Usws 3~
stromregler 4% —>0—> op ° AV
/
N T OJS Yel
dg- 3/2-
| Wandler | Wandler |
o S1
sd 3 > D)
ISq (xB IB 3 IS2 ‘)
y Istwerte
el Strangstréme
ik Maschinenmodell: []
Winkel- und Flussberechung | o, Istwert L
Drehzahl
Hochschule Landshut Elektrische Antriebe Master Webversion
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12.6 Feldorientierte Stromregelung "FOR™

Bestimmung Rotorfeldwinkel y, und Magnetisierungsstrom [’ ;; mit dem "Strommodell"

p
-
Beziehungen: Ormech )|

Maschinenmodell

t
= Jw dt
Or
Wg = p'o‘)mech+ WOR I'de
ISd

> Mg

Omech g€MeEssen
> I'rd

_ s
O‘)R -

R TR Baustellen:
P oo Al e Eingangsgréfen I, und Ig, = Ergebnis der dg-Wandlung mit y,
HRAISETTR T dt — Die Kuh séauft scheinbar ihre eigene Milch, System ist jedoch eindeutig bestimmt
L+ Lk, o Rotorzeitkonstante t: ist leider abh&ngig von L, (Sattigungseffekte Eisenkreis)
R R'r und vom Rotorwiderstand R'; (Temperatur, Stromverdrangung)

— ggf. adaptive Regelverfahren zur Parameternachfiihrung erforderlich

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 92/93
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12.7 Anmerkungen zur Drehmomentberechnung

Vergleich der Drehmomentbeziehungen fiir GM, SM und ASM

Gleichstrommaschine Synchronmaschine Asynchronmaschine

physikalisch messbare Grélien Raumzeigertrafo = dg-System
_ — 3p 3p _ 3 Ly .
1\ h Ro
lp bzw. Bg pag. lp bzw. Bgvag.  Raumzeigerkomponenten = Scheitelwerte lsq
Bewegungsgleichung fur alle Maschinen: M, = M+ Mg + Jg do/dt
Hochschule Landshut Elektrische Antriebe Master Webversion
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12.7 Anmerkungen zur Drehmomentberechnung

Zur Berechnung der statischen Drehmomentkurve mit dem Zeitzeiger-ESB

Schlupfkennlinie einer 125 kW ASM

My

Matlabskript zur Kennlinienberechnung

% Spannung und Frequenz

i i Usn = 325; % V rms (Ud = 800 V)
500 . . fsn = 400; % Hz
Mi: Drehmoment aus innerer
Leistung bzw. Querstrom Isq % Drehzahl und Schlupf
400 T N = 5:5:60* (fsn/p); % Upm Drehzahlvektor
S = (fsn-N/60*p)/fsn; % Schlupfvektor
£
E 300 F . % Stator- ,Rotor und Hauptimpedanz
s Zs = Rs + j*2*pi*fsn*Lss;
, Zr = Rr + j*2*pi*fsn*Lrs + (l-s)./s*Rr;
% Maschinenparameter 7h — i *0%pi*fsn*Lh:
200 S = 4; o3 1 =] pLtrisn ’
Drehmoment aus s - 120e_?" ; ohm % Gesamtimpedanz
Lss = 75e-6; % H Zges = Zs + (Zr.*Zh)./(Z2r+Zh);
100 } Kloss'scher Formel ILh = 1.5e-3; % H 1 g . . ;
(deutliche Abweichung!) Rr = 50e-=3; %| Ohm % Stator-, Rotor- und Magnetisierungsstrom
Lrs = 50e-6; % H _
Is = Usn./Zges;
0 ' ' ' ' ' Ir = - (Usn - Is.* Zs)./Zr;
0 1 2 4 ’ ’ !
000 000 3000 000 5000 6000 Tu _ (Usn - Is.* 7s)./Zh:
N/ Upm
% innere Leistung und Drehmoment
Pi = 3*abs (Ir).”"2 .* (l-s)./s*Rr;
Mi = Pi./N * 30/pi;
.. . . % Alternativrechnung Hauptfluss x Querstrom
BezugsgroBe|struerder|4aupﬂﬂussLﬁJu delta = angle(Is) - angle(Iu); % Stromwinkel
. . mmmmmmmmend> Isqg = abs(Is) .* sin(delta); % "Querstrom"
(nicht der Rotorfluss L,I' g im dg-System) Mi =3 * p * Lh * abs(Iu) .* Isq;
1 Hochschule Landshut Elektrische Antriebe Master Webversion
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12.8 Kennfeld und Betriebsfiihrung eines Traktionsmotors

250
Das max. Dauer-
drehmoment wird 200
hier vom Stator-
strom lg, bestimmt
=
p
- 150
<
(0]
£
(@]
e
e
Qo
O 100¢
50
0

Typisches Wirkungsgradkennfeld einer ASM 100 kW / 156 kW

Puax = 156 kW

Max

2000 4000 6000 8000  10.000  12.000  14.000
Drehzahl / Upm

nze

Das max. Drehmoment
fallt bei der ASM stéarker
ab als mit der Leistungs-
hyperbel: Der Kippschlupf
limitiert den Betrieb hier.

Hochschule Landshut
Prof. Dr. A. Kleimaier

Elektrische Antriebe Master
Kapitel 12: Modellbildung und FOR fir die ASM
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12.8 Kennfeld und Betriebsfiihrung eines Traktionsmotors

Feldschwachung
oberhalb des
Nennpunktes

|, wird auch im Teillast-
bereich reduziert,

um den Wirkungsgrad
Zu verbessern

Der max. zuldssige
Dauerstrom wird durch

die Wicklungstemperatur

Variablen der Regelung der ASM 100 kW / 156 kW

Magnetisierungsstrom I / A rms

Drehmoment / Nm

50

2000 4000 6000 8000 10000 12000 14000
Drehzahl / Upm

Statorstrom Is / A rms

Dauerstrom

Drehmoment / Nm

N
Je.
“

~o
..
~
.
~
~.,
~
~

Querstrom Isq / A rms

Drehmoment / Nm

N
)]
o o o

o Dreh?g:omerﬁ/ Nm 5

drehmomentbildende
Stromkomponente

abweichend von der
Raumzeigernormierung
hier Effektivwerte

2000 4000 6000 8000 1000012000 14000

Drehzahl / Upm

Statorspannung Us / V rms

Fur die Kennfeld-
erzeugung wurde mit
einem stationéren
Modell gerechnet,
siehe Seite 28:

. . 100
bzw. die Entwdrmung M= 3oLl -l
. 80 B G TR
bestimmt +— 0t
60
. . . . . A0 . . . . .
2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
Drehzahl / Upm Drehzahl / Upm
1 Hochschule Landshut Elektrische Antriebe Master Webversion
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