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Spannungsgleichungen im uvw-System

1 2 .1   Mode l lb i ldung

R IS1 S1 L S1

Ersatzschaltbild Stator,

hier nur für Phase 1

US1 Uind,h1

Stator-

system

Rotor-

system

dIS1

dt

M S11

dIS1

dt

M S21

dIS2

dt

M S31

dIS3

dt

M RS11

dIR1

dt

M RS21

dIR2

dt

M RS31

dIR3

dt

vgl. einphasiges

Ersatzschaltbild:

Hauptinduktivität und

Magnetisierungsstrom

(Luftspaltfeld)

Unterschied zur PMSM: jetzt gibt es auch auf der 

Rotorseite 3 Ströme, die über das Luftspaltfeld

mit  dem Statorsystem gekoppelt sind

-System verwenden,

    um Koppelterme zu 

    eliminieren!
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Raumzeigerersatzschaltbild  Spannungsgleichungen im -System 

1 2 .2   Sy s te m gle ic hunge n  im   -Sy s te m

3

2

U = U + jUS S SU (t)S1

U (t)S2

U (t)S3

I = I + jIS S S
2

3

I (t)S1

I (t)S2

I (t)S3

Transformation

in das -System
Rücktransformation

in das 3-Phasensystem

Komplexe Schreibweise für Stator und Rotor
(Komponentenschreibweise: 4 Gleichungen)

I' = I' + jI'R R R 2

3

I (t)R1

I (t)R2

I (t)R3

mech
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U = 0R

U = 0R

Kurzschluss-

läufer

U' = U' + jU'R R R

'

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 70/71 

RS

US

R'RL'RLS

Lh

I

IS I'R

L h

dI
dt

 jp 'mech R

Stator-

kreis

Rotor-

kreis

Rotorfluss:  

' =  L' I'   +  L IR R R h 

Magnetisierungsstrom: 

I = I  + I' S R

Raumzeiger beschreiben den

stationären und dynamischen

Zustand eines Drehstrom-

systems. Transformation siehe

Abschnitt 4.5. Vorgehensweise 

bei der SM war identisch, siehe

Abschnitt 6.3 Seite 15.



Rotorkreis-Querzweig aus dem Raumzeiger-ESB: 

  Spannungsquelle Bewegungsinduktion elektromechanische Energiewandlung

Wirkleistungsberechnung mit Raumzeigern, allgemein: P = —  re  U  I* 

innere Leistung:   P  =  —  re   - i  jp ' I'mech R R*

      P = M  mech

inneres Drehmoment:  M  =  — p  re   -   = — p  im    i  j' I' ' I'R R R R* *

       I = I +I'  und ' = L' I'  + L I    I'  = ———  '   -  ———  I   S R R R R h  R R S

mit  anstelle :  M  =  — p  ———  im   * =  — p  ———  ( ) iIS I' -' I ' I  - ' I  R R S R S R S

        ' = ' + j '   und         I * = I - j I  R R R S S S 

Herleitung einer Beziehung für das Drehmoment

1 2 .2   Sy s te m gle ic hunge n  im   -Sy s te m
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 jp 'mech R

I'R

3

2

I konjugiert komplex:
Vorzeichenwechsel
für den Imaginärteil

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 73 und 76/77

3

2

3

2

3

2

3

2

Lh

L  + L'h R

1

L  + L'h R

Lh

L  + L'h R

3

2

Lh

L  + L'h R



Fazit für das Drehmoment

1 2 .2   Sy s te m gle ic hunge n  im   -Sy s te m

Statorfrequenz:

 wird eingeprägtS 

Bewegungsgleichung:

M = M  + M  + J  (t)i L S Ges mech

Rotorfrequenz:

  =   - pR S mech

Inneres Drehmoment:

 ' I  - ' IR S R SM  =  p    (  )i

I = I + jIS S S

' = '  + j'R R R

3
2

Lh

L  + L'h R

Fazit:

 Mit den 2 komplexen Spannungsgleichungen

   ergeben sich 4 Zustandsdifferentialgleichungen

   für Stator- und  Rotorstrom

 Zustandsvariablen sind  I = I + jI  und I' = I' + jI'S S S R R R

 Hilfsvariablen: I = I + jI  und ' = '  + j'  µ µ µ R R R= L' I'  + L IR R h 

 Rotorfluss und Magnetisierungsstrom sind aus

   den Zustandsvariablen abgeleitete Hilfsvariablen

 Zusammen mit der Beziehung für das Innere Moment

   und einer Bewegungsgleichung ist das System voll-

   ständig beschrieben

Hinweis: Häufig werden Stator- und Rotorfluss als Zustandsvariablen benutzt.

Die Systembeschreibung wird dadurch eleganter, ggf. aber schwerer lesbar.

Beispiel dazu siehe Dierk Schröder, Grundlagen Elektrische Antriebe, Springer 
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Stator-
spannungen

U1u

U1v

U1w

sw: 
uvw - System

blau: 
alpha-beta - System

Kurzschluss-
läufer

Rotor-
spannungen

sw: 
uvw - System

Bewegungs-
gleichung

Raumzeiger-
transformation

Mi

6

N

5

I1rms

4

U1uvw 

3

I2uvw

2

I1uvw

1

x 1/Theta

omega

1

s

Nw

U2beta

0

U2alpha

0

STOP

Rückwärtslauf

u < -100

Ms  [Nm]

1-D T(u)

Momenten-
bilanz

Mux

Mux

J_ges  [kgm²]

J

1/sqrt(2)

Energiewandlung

U1alpha

U1beta

U2alpha

U2beta

Omega_mech

I1alpha

I1beta

I2alpha

I2beta

  Mi

Betrag I2

I2alpha

I2beta
I2abs

Betrag I1

I1alpha

I1beta
I1abs

60 / 2pi

-K-

3/2 KW U1

U1u

U1v

U1w

U1alpha

U1beta

2/3 KW I2

I2alpha

I2beta

Omega_mech

I2u

I2v

I2w

2/3 KW I1

I1alpha

I1beta

I1u

I1v

I1w

Mi

M_Last

2

U1uvw

1

Umsetzung als Simulinkmodell (siehe Praktikumsversuch)

1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f
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Simulationstool: Simulink / Modell: A. Kleimaier

Rücktransformation

De-

mux

Index "1" : Stator

Index "2" : Rotor



  Mi

5

I2beta

4

I2alpha

3

I1beta

2

I1alpha

1

ZDGL I2beta

dI1beta/dt

U2beta

UIbeta

dI2beta/dt

I2beta

ZDGL I2alpha

dI1alpha/dt

U2alpha

UIalpha

dI2alpha/dt

I2alpha

ZDGL I1beta

U1beta

dI2beta/dt

I1beta

dI1beta/dt

ZDGL I1alpha

U1alpha

dI2alpha/dt

I1alpha

dI1alpha/dt

Uind,mech

I1alpha

I2alpha

I1beta

I2beta

omega_mech

UIbeta

UIalpha

Drehmoment

I1alpha

I2alpha

I1beta

I2beta

Mi

Omega_mech

5

U2beta

4

U2alpha

3

U1beta

2

U1alpha

1

U  = jp 'ind,mech mech R
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Simulationstool: Simulink / Modell: A. Kleimaier

Index "1" : Stator

Index "2" : Rotor

Simulinkmodell – Subsystem "Elektrischer Teil"

Energiewandlung

U1alpha

U1beta

U2alpha

U2beta

Omega_mech

I1alpha

I1beta

I2alpha

I2beta

  Mi

1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f
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Simulinkmodell – Subsystem "Elektrischer Teil" – Subsysteme ...

dI1alpha/dt = 1/(L1s+Lh)  *  ( U1alpha -R1 * I1alpha - Lh * dI2alpha/dt )

dI1alpha/dt

2

I1alpha

1

dI/dt 

R1 [ohm]

R1

Lh [H]

Lh

L1s [H]

L1s

L1

I

1/s

dI2alpha/dt

2

U1alpha

1

U1alpha

dI2alpha/dt

I1alpha

dI1alpha/dt

Uind,mech

Simulationstool: Simulink / Modell: A. Kleimaier
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Simulinkmodell – Subsystem "Elektrischer Teil" – Subsysteme ...

UIalpha = - p*omega_mech*(L2s+Lh) * I2beta      -  p*omega_mech*Lh * I1beta

UIbeta   = + p*omega_mech*(L2s+Lh) * I2alpha  +  p*omega_mech*Lh * I1alpha    

UIalpha

2

UIbeta

1

p [ ]

p

Lh [H]

Lh

L2s [H]

L2s

L2

omega_mech

5

I2beta

4

I1beta

3

I2alpha

2

I1alpha

1

U  = jp 'ind,mech mech R
I1alpha

I2alpha

I1beta

I2beta

omega_mech

Uind,mech

UIbeta

UIalpha

Simulationstool: Simulink / Modell: A. Kleimaier
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Simulinkmodell – Subsystem "Elektrischer Teil" – Subsysteme ...

R o t o r f l u s s M o m e n t e n g l e i c h u n g

PSI2_alpha = Lh * (I1alpha + I2alpha)  +  L2s * I2alpha

PSI2_beta   = Lh * (I1beta   + I2beta  )  +  L2s * I2beta  

Mi = 3/2 * p * 1/(1+sigma2) * (PSI2_alpha * I1beta    -    PSI2_beta * I1alpha)

sigma_Rotor = L2r/Lh (Rotorstreuziffer)

Mi

1

sigma_Rotor

PSI2_beta

PSI2_alpha

3/2 * p

Lh [H]

Lh

L2r [H]

L2r

Iu_alpha1

Iu_alpha

1 / (1+u)

I2beta

4

I1beta

3

I2alpha

2

I1alpha

1

Drehmoment

I1alpha

I2alpha

I1beta

I2beta

Mi

Simulationstool: Simulink / Modell: A. Kleimaier

1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f

Fehler im Modell,

dort steht L2s

Lh

L  + L'h R

' I  - ' IR S R S



Hochlaufvorgang am starren Netz mit f   = 50 Hz S

Vorgaben

U    = 230 VS eff

f     = 50 HzS

M  = 65 NmLast

J    = 0.25 kgm²ges

Hochlauf

I = 140 A  = 7,8IS,Anlauf eff SN 

Endzustand

I = I = 18 AS SN eff

S  = 12,4 kVAS

P  = 10,0 kWmech

N  = 1468 Upmmech

f    = 1,07 HzR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-300

-200

-100

0

100

200

300
Zeitverlauf Statorströme

I 
[A

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-300

-200

-100

0

100

200

300
Zeitverlauf Rotorströme

I 
[A

]

Plausibilität?

t [sec]

t [sec]
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-500

0

500

1000

1500
Zeitverlauf Drehzahl

N
 [
U

p
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200

-100

0

100

200

300

400
Zeitverlauf Moment

M
 [
N

m
]

t [sec]

Anfangswertproblem

beim Einschalten:

 Gleichanteile in den

   Strangströmen

 Unsymmetrie verursacht

   Momentenschwingung

 Drehzahlverlauf: Glättung

   durch Integrator für mech
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 Hochlaufvorgang am starren Netz mit f   = 50 Hz S

1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f



Endzustand

M = 65Nm

N = 1468Upm

Simulationsergebnis

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-100

0

100

200

300

400

Moment über Drehzahl

N [Upm]

M
 [
N

m
]

Referenz:

stationäre Rechnung

mit Ersatzschalbild
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Hochlaufvorgang am starren Netz mit f   = 50 Hz S
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Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung
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US

USN

fSN

 Drehzahl wird mit der Statorfrequenz verstellt

 Frequenzrampe zu Hochlauf auf 50 Hz (Nenndrehzahl) 

 Betrieb wie am Netz, aber mit variablem fS

 Schlupf stellt sich lastabhängig ein

Grunddrehzahl-

bereich

Feldschwäch-

bereich

M

3

3

3

L1

L2

L3

f  S

U/f-Kennlinie

Frequenz fS

Amplitude USt
1s

50Hz

Frequenzrampe

U/f-Kennlinie: U  = f ( )S fS

1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f



0 0.5 1 1.5
-100

-50

0

50

100

I 
[A

]

0 0.5 1 1.5
-100

-50

0

50

100

I 
[A

]

Zeitverlauf Statorströme

Zeitverlauf Rotorströme

t [sec]

t [sec]

 Einschwingvorgang beim

 Aufschalten der Spannung

 Resonanz der ASM im

 unteren Drehzahlbereich

 (mech.  magn.)

fS

t
1s

50Hz
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Frequenzrampe
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Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung



0 0.5 1 1.5
-500

0

500

1000

1500

N
 [
U

p
m

]

0 0.5 1 1.5
0

20

40
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Zeitverlauf Moment

Fazit für U/f-Steuerung:

  kein massiver Überstrom,

 geringe therm. Überlastung

 (bei 50 Hz war )I = 7,8IS,Anlauf SN

  Hochlaufdauer 1 s anstatt 0,45 s,

 schont den Antriebstrang 

 aber: Resonanz im unteren

 Drehzahlbereich.  Das Dreh-

 moment ist "nicht unter Kontrolle"

 nicht zu verwechseln mit Sanft-

 anlauf durch elektronischen

 Starter: hier würde nur die

 Statorspannung reduziert

t [sec]
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1 2 .3   S im u la t ion  dy na m is c he s  Ve r ha l te n  be im  H oc h la u f

Hochlaufvorgang mit Frequenzrampe und U/f-Kennliniensteuerung
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 Vorüberlegungen für (quasi-) stationären Betrieb

N / Upm

0

100

200
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M
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 N

m

Schlupfkennlinie einer 125 kW  ASM (p = 4) für f  = 400 HzS

0 1000 2000 3000 4000 5000 6000

mech. Winkelgeschw.   / rad/s = — N / Upm mech

Rotorfrequenz:  = s  =  - p mechR  S S

(Winkelgeschw.)

———————————Drehmoment:   M = 2M  K

Tangente N = N : M = 2 ——     Syn R

im Arbeitsbereich:  M       bzw.   M    fR R

Fazit: Im (quasi-) stationären Betrieb kann

das Drehmoment durch f   gesteuert werden R

1

—— + —— 
R

RK

RK

R

MK

RK

MN

MK

pmech / rad/s

0
0 419 838 1257 1676 2094 2513

S

pmechK RK


30

R

NSynNK

Drehmoment aus

Kloss'scher Formel



M

3

3

3

L1

L2

L3

Drehzahl-

regelung

Drehzahl-

sollwert

Drehzahl-

istwert

Spannungs-

steuerung

Frequenz fS

 f   MR Amplitude US

p/60

f  = f  +S R  pfmech

pfmech

modifizierte U/f-Kennlinie:

U  = U (f ) + U (f )S S0 S S R

 fR

Drehzahlregler

hat ein Drehmomentsignal

 als Ausgangsgröße
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 Umsetzung

U/f-Steuerung mit Drehzahlregelung:

 unterdrückt Resonanzen wie beim rampengeführten Hochlauf in 12.3

 einsetzbar für Antriebe mit geringen dynamischen Anforderungen 

 (Pumpen, Lüfter, ...)

 nicht für hochdynamischen Betrieb mit Drehmomenteinprägung geeignet 

 (Asynchronservomotor, Prüfstands- und Traktionsantriebe, ...)



Vorüberlegung zur Drehmomenteinprägung bei el. Maschinen

1 2 .5   Sy s te m gle ic hunge n  im  dq -Sy s te m
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Gleichstrommaschine

Erreger-
feld

Ankerfeld  Drehmoment 



Darstellung der Feldlinien für das Erregerfeld und Stromwinkel  für max. Drehmoment

Rotor-
feld



Synchronmaschine

Rotor-
feld

Querkomponente des Statorfeldes



Asynchronmaschine

d-Achse d-Achse

q-Achse q-Achse

Anker im Läufer,

Erregung im Ständer

Anker im Stator

Erregung durch das Polrad 

Stator erzeugt Magnetisierung und Querfeld

Erregung durch den Magnetisierungsstrom

Kommutierung: 

mechanischer Kommutator

Kommutierung: 

Vektorregelung mit Wechselrichter

Kommutierung: 

Vektorregelung mit Wechselrichter

Drehmoment: IA

Magnetisierung: I bzw. F Mag

Synchronmoment: Iq

Magnetisierung: I bzw. F Mag

Drehmoment: Iq

Magnetisierung: I   Id µ

Querkomponente des Statorfeldes



Wahl des Koordinatensystems für die d-Achse
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Das Rotorfeld läuft mit   über den Rotor hinweg,R

der sich im elektrischen System mit p   dreht:Rmech

somit ist   = p  +  = Rotorfeld Rmech R  S

Das Rotorfeld läuft synchron mit dem Statorfeld um!

Im Luftspalt herrschen also die gleichen

  magnetischen Verhältnisse wie bei der SM

 Vektorregelung wie in Kapitel 7. Aber: 

el
Bezug für die Koordinatentransformation:

Achse der Wicklung für Strang U bzw. 

-Achse des statorfesten -Systems

Rotorflusswinkel   =    dt  =   (p + )dt el S mech R

t

0

t

0

U-Achse

3

2

IU

IV

IW



dq

I

I

Id

Iq

3/2-Wandlung

Clarketransformation

dq-Wandlung

Parktransformation

el

Im Gegensatz zur Synchronmaschine

kann   nicht direkt mit einem Pollage-el

sensor gemessen werden.

Rotor-

feldQuerkomponente des Statorfe
ldes

d-A
chse

q-A
chse

-Achse

Bezug für das dq-System: d-Achse = Nordpol des Rotorfeldes

drehend

stehend
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Herleitung einer Beziehung für das Drehmoment

im  war (Seite 6  unten): -System  M  =  — p  ———  im   * =  — p  ———  im  *  i -' I ' IR, S, R,  S,

Anwendung der dq-Transformation:      ' R, ,* =  e         und =  e      ' IR,dq S,dqI S  

dann ergibt sich im  dq-System: ' IR,dq S,dq  M  =  — p  ———  im   e      e        Drehoperatoren kürzen sich herausi      
   

'  = '    I  = I  + jI  R,dq Rd Sdq Sd Sq     und       durch Bezugssystemwahlist '  = 0 Rq

' I    Rd Sq    M  =  — p  ———    i

'  = L          Rd h     Rotorfluss = Hauptinduktivität  d-Komponente Magnetisierungsstrom  Iµd

       

        M  =  — p  ———        i Iµd ISq

3

2

Lh

L  + L'h R

jel

3

2

Lh

L  + L'h R

-jel

3

2

Lh

L  + L'h R

3

2

L ²h

L  + L'h R

-jel

3

2

Lh

L  + L'h R

jel

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 80

im- ab* = - imab* = ima*b, sonst VZ-Fehler für Mi



Zusammenfassung für Rotorfrequenz, Magnetisierungsstrom und Drehmoment

Rotorfluss im dq-System:

'  = '  R Rd

' = 0 per Definition, da ' genau auf der d-Achse liegtRq R 

damit ist:

'   =  L   I'  Rd h Rd

I'  : rotorflussbezogener MagnetisierungsstromRd

Weitere Beziehungen:

Magnetisierungsstrom:  I'  = I  -    Rd Sd R

Rotorfrequenz:                  = R

Rotorzeitkonstante:            = R

Inneres Moment: 

M  =  p     Ii  Sq'Rd

bzw. 

M  =  p    Ii SqI'Rd 

3
2

Lh

L  + L'h R

3
2

L ²h

L  + L'h R

dI'Rd

dt

ISq

  I'R Rd

L  + L'h R

R'R

Fazit für die Regelung der ASM

 durch kann  direkt eingestellt werdenI MSq i

  durch kann über ein PT1-Glied mit  derI Sd R

 Magnetisierungsstrom eingestellt werden,I'Rd 

 ggf. mit einem Magnetisierungsstromregler

 aus  und  kann die Rotorfrequenz I I'Sq Rd R

   bestimmt werden. Wird   gemessen,mech

   kann man  für die dq-Wandlung berechnenel
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1 2 .5   Sy s te m gle ic hunge n  im  dq -Sy s te m

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 80/81



1 2 .6   Fe ldor ie n t i e r te  S t r om r e ge lung  " F O R "

Grundsätzliches Strukurbild

3

3

2dq



-

-

ISq,Soll

ISd,Soll

IS1

IS2

el

I

I

ISd

ISq

Uq

Ud

Regel-
differenz

Strom-
regler

inverser
dq-Wander

Vor-
steuerung

dq



U

U

inverser
3/2-Wander

2

3

USW1

USW3

USW2

el

Istwerte
Strangströme

dq-
Wandler

3/2-
Wandler

PWM

S

M

3Istwert
Drehzahl

mech

Maschinenmodell:
Winkel- und Flussberechung

Drehmoment-
vorgabe

Magnetisierungs-
stromregler

I'Rd
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1 2 .6   Fe ldor ie n t i e r te  S t r om r e ge lung  " F O R "

Bestimmung Rotorfeldwinkel  und Magnetisierungsstrom mit dem "Strommodell"el I'Rd 

Beziehungen:

  =    dtel S

  =  p + S mech R

  gemessenmech

  = R

I'  = I  -    Rd Sd R

   = R

t

0

ISq

  I'R Rd

dI'Rd

dt

L  + L'h R

R'R

ISd

ISq

R
I'Rd

R
R

mech

p

el

S

I'Rd

S

Baustellen:

 Eingangsgrößen  und  = Ergebnis der dq-Wandlung mit    elI ISq Sd

  Die Kuh säuft scheinbar ihre eigene Milch, System ist jedoch eindeutig bestimmt

 Rotorzeitkonstante : ist leider abhängig von  (Sättigungseffekte Eisenkreis)R  Lh

 und vom Rotorwiderstand  (Temperatur, Stromverdrängung)R'R

   ggf. adaptive Regelverfahren zur Parameternachführung erforderlich 
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Maschinenmodell

vgl. Uwe Nuss, Hochdynamische Regelung Elektrischer Antriebe, VDE Verlag GmbH, 2010; Seite 92/93
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 Vergleich der Drehmomentbeziehungen für GM, SM und ASM

Gleichstrommaschine Synchronmaschine Asynchronmaschine

physikalisch messbare Größen Raumzeigertrafo  dq-System Raumzeigertrafo  dq-System

Mi =  — p  ———    ' IRd Sq
3

2

Lh

L  + L'h R

ISd

Mi =   k       EMK I  +  I Iq q d( L  - L  )d q
3p
4

3p
2

I  bzw. B F R,Mag.

M Ii A = c     

I  bzw. B F R,Mag.

Bewegungsgleichung für alle Maschinen: M  = M  M   d/dti W S+ + J  Ges

Raumzeigerkomponenten = Scheitelwerte
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 Zur Berechnung der statischen Drehmomentkurve mit dem Zeitzeiger-ESB 

N / Upm

0
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400

500

M
 /
 N

m

Schlupfkennlinie einer 125 kW  ASM 

0 1000 2000 3000 4000 5000
6000

Drehmoment aus

Kloss'scher Formel

(deutliche Abweichung!)

Mi: Drehmoment aus innerer

Leistung bzw. Querstrom Isq

Matlabskript zur Kennlinienberechnung

% Spannung und Frequenz
Usn  = 325;     % V rms (Ud = 800 V)
fsn  = 400;     % Hz

% Drehzahl und Schlupf
N    =  5:5:60*(fsn/p);   % Upm Drehzahlvektor
s    = (fsn-N/60*p)/fsn;  %     Schlupfvektor
 
% Stator- ,Rotor und Hauptimpedanz
Zs   = Rs + j*2*pi*fsn*Lss;
Zr   = Rr + j*2*pi*fsn*Lrs + (1-s)./s*Rr;
Zh   = j*2*pi*fsn*Lh;
 
% Gesamtimpedanz
Zges = Zs + (Zr.*Zh)./(Zr+Zh); 
 
% Stator-, Rotor- und Magnetisierungsstrom
Is   =    Usn./Zges;
Ir   = - (Usn - Is.* Zs)./Zr;
Iu   =   (Usn - Is.* Zs)./Zh;
 
% innere Leistung und Drehmoment
Pi   = 3*abs(Ir).^2 .* (1-s)./s*Rr;
Mi   = Pi./N * 30/pi;
 
% Alternativrechnung Hauptfluss x Querstrom
delta = angle(Is) - angle(Iu);   % Stromwinkel
Isq   = abs(Is) .* sin(delta);   " % "Querstrom
Mi    = 3 * p * Lh * abs(Iu) .* Isq; 

% Maschinenparameter 
p   = 4;         %
Rs  = 120e-3;  % Ohm
Lss = 75e-6;   % H
Lh  = 1.5e-3;  % H
Rr  = 50e-3;   % Ohm
Lrs = 50e-6;   % H

MK

Bezugsgröße ist hier der Hauptfluss L Ih 

(nicht der Rotorfluss L I'  im dq-System)h R 
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156 kW - Hyperbel

Betriebsbereichsgrenze

Das max. Drehmoment

fällt bei der ASM stärker

ab als mit der Leistungs-

hyperbel: Der Kippschlupf

limitiert den Betrieb hier.

Das max. Dauer-

drehmoment wird

hier vom Stator-

strom I  bestimmtSN
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Variablen der Regelung der ASM 100 kW / 156 kW
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I  wird auch im Teillast-µ

bereich reduziert,

um den Wirkungsgrad

zu verbessern



Nenn-
Punkt

Feldschwächung

oberhalb des

Nennpunktes

Der max. zulässige

Dauerstrom wird durch

die Wicklungstemperatur

bzw. die Entwärmung

bestimmt

drehmomentbildende

Stromkomponente

abweichend von der

Raumzeigernormierung

hier Effektivwerte

Für die Kennfeld-

erzeugung wurde mit

einem stationären

Modell gerechnet,

siehe Seite 28:

M = 3pL I Ih µ Sq
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