Leistungselektronik

Kapitel 8: Aufbautechnologie und Entwärmung

Prof. Dr.-Ing. A. Kleimaier

Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 1/29

Leistungselektronik

Aktuelles Kapitel

Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 2/29

Leistungselektronik

Übersicht

Kapitel 8: Aufbautechnologie und Entwärmung

- 8.1 Grundlagen Aufbautechnik
- 8.2 Praxisbeispiele Modulaufbauten
- 8.3 Verbindungstechnik
- 8.4 Grundlagen thermische Berechung
- 8.5 Thermischer Modulwiderstand
- 8.6 Dynamisches Verhalten
- 8.7 Entwärmung Gesamtsystem

Aufbau- und Verbindungstechnik "AVT"

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 3/29

Beispiel Halbbrückenlayout

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 4/29

Anschlüsse / Potentiale

Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 5/29

Anforderungen \leftrightarrow Problembaustellen

Anforderung	Baustelle	Ausfallszenario
Vibration, Schock	Verbindungstechnik	Abheben/Bruch Bonddrähte, Lotermüdung Die-DCB / DCB-Grundplatte
Temperaturzyklen	Verbindungstechnik	Delamination DCB-Substrat
Lastwechsel	Verguss/Passivierung	"Rekonstruktion" Chipmetallisierung
Kühlung	Materialauswahl, Aufbau	Unzulässiger lokaler Temperaturhub
Isolation	Abstände, Verguss	Durchschlag
hohe Strombelastung	Querschnitte, Bondrähte	lokale Übertemperatur
Schaltüberspannung	niederinduktiver Aufbau	Avalanchebetrieb \rightarrow thermischer Durchbruch
Bauraum	Gehäuse, Aufbau, Kühlung	steht ggf. im Trade-off mit den Sicherheitsreserven der Auslegung

Hoch Prof.

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 6/29

Anforderung niederinduktiver Aufbau

IGBT-Ausschaltvorgang: Schaltüberspannung läßt sich durch kleine Modulinduktivität deutlich reduzieren → Kap. 10 Schaltvorgänge

Faustregel:

Modulinduktivität wird durch die Fläche bestimmt, die von Plus-HS-LS-Minus eingeschlossen wird

IGBT-Module 600V:

typisch: 10..20nH schlecht: > 30nH

Prinzipiell:

Plus/Minus-Anschlüsse eng beieinander halten

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 7/29

Anforderung Temperaturzyklenfestigkeit

hier: ohne Lotschichten (siehe Abschn. 8.3)

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 8/29

8.2 Praxisbeispiele Modulaufbauten

Sixpack = 3 Halbbrückenmodule

jeweils 2 IGBTs / Dioden pro Schalter parallel

Bedingung Durchlasskurve IGBT: positiver Temperaturgradient

Bild: A.Kleimaier / Infineon FS400R06A1E3 "Hybridpack1" ohne Deckel

Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 9/29

8.2 Praxisbeispiele Modulaufbauten

Einzelnes Halbbrückenmodul

jeweils 4 IGBTs / Dioden pro Schalter parallel Einzel-DCBs für jeden Schalter

Bild: A. Kleimaier / Semikronmodul

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 10/29

8.2 Praxisbeispiele Modulaufbauten

Kleinere Ströme: Modulaufbau mit TO-Gehäusen

Wärmeübergang: im TO-Gehäuse deutlich schlechter

Gehäuster, Diskrete Leistungsmosfets: z.B. im TO263-7 bzw. D²-Pak

Layout auf PCB z.B. 200µ-Dickkupferplatine

Typ. Lösung für Entwärmung: Drain-Footprint mit Vias aufgefüllt (Durchkontaktierungen)

Hochschule Landshut Prof. Dr. A. Kleimaier

Leistungselektronik

Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 11/29

8.3 Verbindungstechnik

Lote:

- "Chiplot" (Pb, Problem: RoHS)
- SnAg3 (Schmelzpunkt 220°C)

Problem:

- Temperaturzyklenfestigkeit begrenzt
- Abhilfe: Grundplatte aus AlSiC

Lötprozess:

- Lötpaste mit Schablone auftragen
- Schmelzvorgang im Ofen

Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 12/29

8.3 Verbindungstechnik

Druckkontaktierung

Vorteil/Nachteil:

- Lebensdauerlimitierung durch die Lötverbindung DCB Grundplatte entfällt
- Aber: Spalt DCB Grundplatte muß genau definiert sein (z.B. Durchwölben der DCB)
- \Rightarrow Herstellprozess kritisch, Knowhowfrage

Einsatz:

- Feder-Druckkontakte: SKiiP-Module von Semikron
- vgl. Abschnitt 4.4, Pressverbände Scheibenzellen-Thyristoren

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 13/29

8.3 Verbindungstechnik

Vorteile:

- Lastzyklen Stresstest: bis 100.000 (Standard-Lötmodule: 20.000)
- Bereits in Serie: Verbindung Chip-DCB

Sinterprozess:

- Ag-Pulverpaste aufbringen
- Sintern bei hohem Druck und ca. 250°C (Niedertemperatur-Diffusionssintern)

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 14/29

8.4 Grundlagen thermische Berechnung

Ersatzschaltbild

elektrisch

thermisch

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 15/29

8.4 Grundlagen thermische Berechnung

Thermisches Ersatzschaltbild Modulaufbau

Leistungselektronik

Webversion Seite 16/29

Kapitel 8: Aufbautechnologie und Entwärmung

8.4 Grundlagen thermische Berechnung

Thermischer Widerstand und thermische Kapazität

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 17/29

Beispielrechnung Standardmodul Al₂O₃-DCB

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik

Webversion Seite 18/29

Kapitel 8: Aufbautechnologie und Entwärmung

Beispiel FEM-Simulation

Simulation: A. Kleimaier / femm 4.2, David Meeker, www.femm.info

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 19/29

Beispiel FEM-Simulation

Contourplot und Heat flux density vectors

Temperaturverläufe horizontal

Temperaturverlauf vertikal

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 20/29

Beispielrechnung AIN-DCB mit AlSiC-Grundplatte

Leistungselektronik

Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 21/29

Beispielrechnung Modul mit AIN-DCB mit Cu-Grundplatte, vollständig gesintert

Hochschule Landshut Prof. Dr. A. Kleimaier

Leistungselektronik

Webversion Seite 22/29

Kapitel 8: Aufbautechnologie und Entwärmung

Beispielhafte Berechnung von Zeitkonstanten

IGBT-Die SIGC76T60R3 Chiplot DCB-Kupferschicht, oben	A = 7.9mm x 9.7mm, d = 0.07mm A = 7.9mm x 9.7mm, d = 0.07mm A = 8.7mm x 10.7mm, d = 0.30mm	$C_{th} = 9 \text{ mWs/K}$ $C_{th} = 9 \text{ mWs/K}$ $C_{th} = 94 \text{ mWs/K}$	112mWs/K
Entwärmung des Pakets über den	R _{th} des darunterliegenden Al ₂ O ₃	R _{th} = 0.158 K/W	τ_{th} = 18ms
CU-Modulgrundplatte	A = 59mm x 104mm, d = 3mm	C _{th} = 63 Ws/K	τ_{th} = 2.4s
(SKM 400GB066D)	Entwärmung Case-Heatsink, Paste	R _{th} = 0.038 K/W	
Al-Kühlkörper, ohne Rippen	A = 400mm x 300mm, d = 20mm	C _{th} = 5952 Ws/K	τ_{th} = 2min
(Fischer SK461)	Entwärmung bei v _L = 5m/s	R _{th} = 0.020 K/W	

...zum Verständnis:

 τ_{th} wird mit fallendem R_{th} kleiner, weil sich ein kleinerer Temperaturhub ergibt \Rightarrow Endwert wird schneller erreicht!

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 23/29

Betrieb bei $f_0 = 500$ Hz und $f_T = 12$ kHz, a = 80%

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 24/29

Betrieb bei $f_0 = 50$ Hz und $f_T = 12$ kHz, a = 80%

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 25/29

Betrieb bei $f_0 = 5Hz$ und $f_T = 12kHz$, a = 10%

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 26/29

Belastung der Halbleiter bei drehzalvariablen Umrichterantrieben

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung

Webversion Seite 27/29

8.7 Entwärmung Gesamtsystem

Vergleich mit Standardaufbau

Standard, stationär: Luftkühlung

Problem 1: Wärmeübergang Modul - Kühler Wärmeleitpaste: $\lambda \approx 1..10$ W/mK Problem 2: Wärmeübergang Kühler - Luft \Rightarrow Baugröße + Gewicht

Beispiel aus Kapitel 7:

Kühlkörper \Rightarrow Luft 0.020 K/W gesamt (3 Phasen)

Automotive, Traktion: Wasserkühlung

- Vorteil 1: kleines ΔT_{S-A} , bessere WR-Ausnutzung
- Vorteil 2: baut sehr kompakt, kleines Gewicht
- Nachteil: ggf. aufwändiges Wasserkühlsystem (Ausfallsicherheit, Kosten)

Anhaltspunkt:

3 Phasenmodule \Rightarrow Wasser 0.003 .. 0.005 K/W

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 28/29

8.7 Entwärmung Gesamtsystem

Alternative Kühlmethoden

Direkte DCB-Kühlung

- Kühlmittel: Wasser
- möglichst turbulente Strömung an der DCB-Unterseite begünstigt Wärmeübergang
- Gefahr: Betrieb mit Luftblasen (Zeitkonstante DCB ca. 20ms)
- Gefahr: Undichtigkeit an DCB-Auflage

Siedebadkühlung

- Kühlmittel: FC (verschiedene Siedepunkte)
- Dampfblasen steigen an der Wärmequelle auf und kondensieren an den Gehäusewänden
- Problem: gesamtes System muß dicht sein, inklusive der elektrischen Durchführungen
- Korrekte Befüllung, Lage im Betrieb???

Hochschule Landshut Prof. Dr. A. Kleimaier Leistungselektronik Kapitel 8: Aufbautechnologie und Entwärmung Webversion Seite 29/29